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Abstract
Much of the information about the multi-valley structure of disordered spin
systems can be convened in a simple tree structure—a barrier tree—the leaves
and internal nodes of which represent, respectively, the local minima and
the lowest energy saddles connecting those minima. Here we apply several
statistics used in the study of phylogenetic trees to barrier trees that result
from the energy landscapes of p-spin models. These statistics give information
about the shape of these barrier trees, in particular about balance and symmetry.
We then ask if they can be used to classify different types of landscapes,
compare them with results obtained from random trees, and investigate the
structure of subtrees of the barrier trees. We conclude that at least one of the
used statistics is capable of distinguishing different types of landscapes, that
the barrier trees from p-spin energy landscapes are quite different from random
trees, and that subtrees of barrier trees do not reflect the overall tree structure,
but their structure is correlated with their ‘depth’ in the tree.

PACS numbers: 75.10.Nr, 87.23.Kg

1. Introduction

The notion of energy (fitness) landscapes has played a crucial role in the development of many
areas of physics and biology such as disordered systems, neural networks, combinatorial
optimization problems [1, 2], RNA folding [3], and evolutionary change [4, 5], to mention
only a few. In particular, considerable effort has been devoted to the study of the interplay
between the geometry of the landscape and the nature of the relaxation dynamics, searching
heuristic or evolutionary process unfolding on the landscape. However, the inherent high-
dimensionality of these landscapes poses a serious hindrance to the characterization of their
topology. In fact, most of the studies have focused on the statistical characterization of a few
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local properties of the landscape by looking at, e.g., the auto-correlation function of unbiased
walks over the configuration space [6] or the energy distribution of local minima [7–9], while
a satisfactory description of a landscape should also address the (relative) energy differences
of the local minima, the height of the barriers between these minima, as well as the distribution
of saddle points [10, 11].

The idea of condensing all the landscape information into a tree structure, termed a barrier
tree, was introduced in the context of RNA and protein folding [12–15], and spin-glass models
[10, 16–18]. The advantage of barrier trees, whose leaves represent the local minima and the
internal nodes the lowest-energy saddles connecting those minima, is that they are both visually
appealing (much information can be obtained from just looking at them, see figure 1), as well as
mathematically well-defined, lending themselves to rigorous analysis [19]. However, a general
quantitative measure to characterize unambiguously different kinds of barrier trees (and hence
energy landscapes) remains to be obtained. For instance, the size-frequency distribution of low
energy saddles ψ(w) ∼ w−D , where w = w(s) is the fraction of minima that can be connected
through saddle s, does not provide a good measure because D ∼ 2 regardless of whether the
barrier tree results from a spin-glass landscape or whether it is generated randomly [18].

The situation seems to be similar in the analysis of phylogenetic trees, where it is also
believed that the shape of the tree contains valuable clues about the evolutionary process
[20, 21], but so far no single satisfactory measure of tree shape has been constructed
[22–26]. In this contribution we apply five measures of tree shape that were originally used to
study phylogenetic trees (see, e.g., [24]) to barrier trees resulting from the Ising p-spin model.
These measures provide statistical information about the shape of the barrier tree, mainly its
symmetry or balance, but ignore the lengths of the branches, i.e., the height of the barriers
between minima. While the extreme statistics of these heights provide useful information
on the performance of local search algorithms such as simulated annealing [17], a measure
based solely on the shape of the barrier tree seems more adequate for classification purposes
since the shape is probably insensitive to variations in minor details of the underlying energy
landscape. Tree shapes are important in the biological context also because many methods
of phylogeny estimation, including parsimony, do not produce branch lengths. We find that
all five measures can be used to tell random from spin-glass trees, but only one measure can
distinguish between different spin-glass trees.

A few cautionary remarks regarding the relevance of the concept of energy landscape
to the understanding of the thermodynamic properties of spin glasses are in order. The
characterization of an energy landscape is usually based on a few key elements—local minima,
energy barriers and saddles—which, in turn, are rigorously defined in terms of the spin
configuration space, the energy assignment to each spin configuration, and the neighbourhood
relation in the configuration space (see, e.g., section 2). However, there seems to be no simple
relation between those elements and the thermodynamic phases (equilibrium states) of the
spin-glass model, since these phases are clearly independent of the neighbourhood relation
between spin configurations or the relaxation dynamics. To illustrate this point, we note that
though the landscape of the Ising spin glass with short-range interactions in three dimensions
is as complex as its counterpart of infinite-range interactions [16], its thermodynamics can be
successfully studied under the assumption of a trivial ergodicity breaking at low temperature, in
which there is a single thermodynamic phase. (We refer the reader to [2] for a lucid discussion
of these controversial issues.) Nonetheless, the study of the organization of the metastable
states (local minima) of spin-glass models has a long tradition in the physics literature of
disordered systems, beginning with the work of Bray and Moore more than two decades ago
[7]. It is from this perspective that the statistical studies of energy landscapes in general, and
the present work in particular, should be considered.
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In the next section, a brief overview of the Ising p-spin model and energy landscapes is
given. Section 3 then reviews the notion of barrier trees. In section 4, phylogenetic trees and
several tree shape statistics used to study them are discussed. In particular, we point out that
the subtree that connects two leaves in a barrier tree corresponds to the evolutionary path of
minimum fitness cost, in contrast to the traditional phylogenetic trees for which the subtrees
are determined by the similarity between the leaves, regardless of the barrier height between
them. The results of applying these measures to barrier trees of p-spin energy landscapes are
presented in section 5. The main conclusions are then summarized in the final section of the
paper.

2. Energy landscapes of p-spin models

Consider a system of N Ising spins s = (s1, . . . , sN ) where s ∈ {−1, +1}, with the following
energy function

Hp(s) = −
∑

1�i1<i2...<ip�N

Ji1i2...ip si1si2 . . . sip . (1)

Here, 1 � p � N and the Ji1i2...ip are i.i.d. random variables from a Gaussian distribution
with mean 0 and variance p!/(2Np−1). Thus, each of the 2N possible spin configurations is
assigned an energy value that is completely specified by the (magnetic) interactions within
all possible subsets of p spins. This spin glass is known as the p-spin model [8, 27]. In the
regime of large p and N with N � p the energies of any two distinct spin configurations
become independent random variables, distributed by a Gaussian of mean 0 and variance N,
so that the random energy model (REM) is recovered in this limit [8, 27]. Here the scaling of
the variance with N guarantees the extensivity of the free-energy. Another important limiting
case is p = 2, which corresponds to the Sherrington–Kirkpatrick (SK) model [28].

We call two spin configurations s and t neighbours if they differ in only one of the N
spins, i.e., when

∑N
i=1 |si − ti | = 2. In other words, neighbouring configurations can be

turned into each other by a single spin flip. When p is small, neighbouring spin configurations
will have highly correlated energy values, since the one spin si that is different from the two
configurations only influences a small number of the possible subsets of p spins. When p
increases, the energy values of neighbouring spin configurations will become less correlated,
becoming completely uncorrelated in the limit p → ∞.

The energy landscape of a p-spin model consists of the configuration space V of the
2N possible spin configurations, with the single spin flip neighbourhood relation imposed
on it, and where the energy value Hp(s) of each spin configuration s is considered to be its
‘height’. This gives rise to the intuitive image of a more or less mountainous landscape with
peaks, valleys and saddle points. A ‘walk’ on this landscape consists of moving from one
neighbouring spin configuration to another, climbing up a peak or going down a valley, or
perhaps just moving around randomly. A local search algorithm, such as simulated annealing,
can be seen as performing such a walk, in search of the lowest valley. In addition, p-spin
landscapes have been used to model evolutionary processes (see, e.g., [29–31]) since they form
a class of tunably rugged landscapes similar to Kauffman’s Nk-model [4]. In this context,
evolution is described as an ‘adaptive’ walk on the energy landscape.

3. Barrier trees

A local minimum in a p-spin energy landscape is simply a spin configuration s that has a lower
energy than all of its neighbours. A path �pst between two configurations s and t is a sequence



3674 W Hordijk et al

12

3 4

56

78

9 10

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

0.58

0.58

1.21

2.2

1.21

2.2

0.54

0.54

0.34

0.34

0.65

Figure 1. Barrier tree for N = 10 and p = 2. The local minima are labelled 1 to 10, and the
height of the barriers is shown along some of the branches. The actual energy values can be read
from the scale on the left.

of neighbouring configurations, starting at s and ending at t. In other words, it represents a
series of single spin flips that transforms configuration s into t. Note that there exist multiple
paths between any pair of configurations s and t. A saddle point between two local minima
s and t is then defined as the minimum from the set of maximum energy values along each
possible path �pst between s and t; see, e.g., [10, 11]. So, the energy value E[s, t] of this saddle
point is

E[s, t] = min
�pst

{
max
z∈ �pst

{Hp(z)}}. (2)

The barrier B(s) of a local minimum s is defined as the height of the lowest saddle point that
connects s with a local minimum t of lower energy,

B(s) = min
t

{E[s, t] − Hp(s)|Hp(t) < Hp(s)}. (3)

The information about the energy values of a landscape’s local minima and the barriers that
connect these local minima can be represented by a barrier tree. In such a tree, the leaves of the
tree represent the local minima, and the internal nodes represent the saddles, with the barrier
sizes given by the length of the branches connecting the local minima to their corresponding
saddles. Figure 1 shows an example of a barrier tree for a N = 10 and p = 2 p-spin landscape.
There are ten local minima in this landscape (labelled 1 to 10 in the tree), with nine saddle
points (the internal nodes). The length of each branch in the tree indicates the height of the
corresponding barrier (this value is shown along the branch).

The algorithm for constructing these barrier trees is presented in [15, 19]. It is
implemented in the barriers program5, which constructs the tree from a sorted list of

5 The source code is available at http://www.tbi.univie.ac.at/∼ivo/RNA/Barriers/.
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A

B

Figure 2. The tree obtained from the minimum fitness paths, shown by thin lines with the saddle
points indicated by black dots and the leaves by white dots, does not necessarily coincide with
the trees obtained from clustering methods that are based on sequence similarity, shown here with
thick lines. The darker regions indicate higher fitness configurations.

energy values of all spin configurations in the landscape. The program barriers is used here
to generate barrier trees of p-spin landscapes, see also [17, 18] for applications to spin-glass
problems.

4. Phylogenetic trees

Phylogenetic trees are often used to study the historical relations within or between groups
of biological species; see, e.g., [21]. The currently existing species (or subspecies) form the
leaves of the tree, and two related species are linked through their last common ancestor,
which forms an internal node in the tree. The length of the branch between a species and its
ancestor indicates how long ago the speciation event occurred that led to the current species.
‘Dead-ends’ in this tree represent extinction events. So, the shape of a phylogenetic tree
contains information about patterns of speciation and extinction (and possibly about the rates
of these occurrences), and thus tells us something about the evolution of different species.

The traditional approaches to reconstruct or infer a phylogenetic tree given the extant
species (i.e., the leaves) are based on sequence similarity, i.e., configurational overlap only,
which can be justified by the (usually implicit) assumptions of a flat fitness landscape and a
diffusive behaviour in sequence space [21]. However, it seems intuitive that, regardless of
the similarity between two sequences, if the fitness costs of all possible evolutionary paths
connecting them are high, they must be put far apart in the phylogenetic tree. In the barrier tree
approach both similarity and fitness cost are taken into account to yield the evolutionary path
of minimum fitness cost connecting two species. Thus, it may be viewed as a generalization
of the maximum parsimony principle to rugged fitness landscapes. We recall that maximum
parsimony chooses the tree (or trees) that requires the fewest evolutionary changes (spin flips,
in the present context). In figure 2 we give an example in which the distance-based tree and
barrier tree have different topologies.

Various methods have been proposed to analyse phylogenetic trees. Here, we consider
five statistics that were used in [24] to measure tree symmetry and balance. The trees are
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assumed to be binary trees with n leaves (or species) and thus n − 1 internal nodes, with the
root being the last common ancestor of all n species. Let d(i, j) be the graph-theoretical
distance between two nodes of the tree, i.e., the number of edges along the path that connects
them. Furthermore, we denote the root of the tree by ∅. The height of a leaf l is hl = d(∅, l).
Equivalently, hl is the number of internal nodes between leaf l and the root ∅ (inclusive).
For each interior node i we have two subtrees with ri and si leaves, respectively. We assume
ri � si . The subtree height of an interior node i is mi = maxl∈Ti

d(i, l) where the maximum
is taken over all leaves l in the subtree Ti below i, i.e., the subtree of which i is the root.

With this notation we may define the following five characteristic values for the shape of
a binary rooted tree:

(i) H = 1
n

∑n
l=1 hl is the average height of a leaf in the tree6.

(ii) σH =
√

1
n

∑n
l=1(hl − H)2, is the standard deviation of the leaf height.

(iii) C = 2
n(n−3)+2

∑n−1
i=1 (ri −si) is a measure for the imbalance of the tree. Up to normalization

it is the same as Colless’s imbalance measure [22]. A closely related measure of this type,
which we will not use here, essentially amounts to averaging (ri − si)/(ri + si) instead,
see, e.g., [25, 26].

(iv) B1 = ∑
i �=∅

1/mi is the average inverse subtree height, where the sum is taken over all
n − 2 internal nodes i excluding the root ∅.

(v) B2 = ∑n
l=1 2−hl hl is an alternatively weighted average leaf height.

In [24] the variance σ 2
H was considered, but here we will use the standard deviation. Both H

and σH have larger values for more asymmetric trees. In [24] it is shown that the expected
value of 〈H 〉 = 2

∑n
k=2 1/k for random trees with n leaves. Values of H larger than this

indicate trees more asymmetric than a random tree. For a completely symmetric tree, σH = 0,
while it has a maximum value for a completely asymmetric tree.

The imbalance measure C examines the internal nodes of a tree. It ‘weighs’ the subtrees
branching out from each internal node by counting and comparing the number of leaves in
each subtree. These weight differences are then averaged and normalized over all internal
nodes of the tree. The value of C increases from 0 for a completely symmetric tree to 1 for
a completely asymmetric tree. The quantity B1 looks at the longest possible path mi from
each internal node i to any of the leaves in its subtree. The statistic B2 is based on an index
of information content. For highly asymmetric trees B2 will quickly converge to a value of 2.
For a completely symmetric tree, it will be equal to log2(n), where n is the number of leaves
in the tree. Both B1 and B2 have smaller values for increasingly asymmetric trees.

5. Results

Here, we apply the statistics presented in the previous section to barrier trees that result from
p-spin energy landscapes. The parameter values used are N = 10, 12, 15, 18, 20 and 22, and
p = 2, 3 and ∞ (REM). For each combination of N and p, 100 independent landscapes were
generated randomly, and the barrier trees for each of these landscapes were constructed. The
tree statistics reported here are the averages of the 100 trees for each parameter combination.

Three of the statistics (H, σH and B1) are exponential in N, the number of spins. For
example, the relation between H and N is H = 0.43 exp(0.20N) for p = 2. The data for H
(symbols) and the exponential fits (solid lines) are shown in a semi-log plot in figure 3(a) for
the different values of p. The data for σH and B1 (not shown) are similar, but with different
slopes. It turns out that the average number of leaves, n, in the barrier trees is also exponential
6 In [24] this quantity is denoted by N̄ .
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Figure 3. Size dependence of tree statistics as a function of the number of spins N for three classes
of landscapes: p-spin models with p = 2 (•) and p = 3 (�), and the REM (�). Each data point
is an average over 100 independent landscapes. The solid line is an exponential fit to the data
for the average leaf height H in (a). The solid lines in (b) are fits to C = a + b ln N . We do not
have a justification for this particular functional form. The values of B2 quickly converge to the
asymptotic value of 2 in (c), where the solid lines are simply guides to the eye.

Table 1. The slopes of the exponential fits for the statistics H, σH ,B1 and n, for each value of p.

p = 2 p = 3 REM

H 0.1999 0.3157 0.6340
σH 0.2485 0.3381 0.6374
B1 0.1070 0.1832 0.6040
n 0.1951 0.2945 0.6306

in the number of spins N, with the same slope as for H. Analytical values for this exponent,
defined as limN→∞ ln n/N , for the p-spin models are derived, e.g., in [8] (see also [32]). The
numerical values from the simulations reported here are compiled in table 1.

The imbalance C is sub-linear in N, as shown in figure 3(b), and eventually converges to
1 for large N (so the logarithm fitting cannot remain valid for all N). However, the value of
B2 very quickly converges to 2 with increasing N, as shown in figure 3(c), and thus it does
not seem to be a very useful measure to distinguish the trees. It should be noted at this point
that the number n of leaves, i.e., local minima, depends not only on N but also on the type of
landscape. We will therefore consider tree measures as a function of n rather than N below.
In fact, n is the natural parameter in the analysis of phylogenetic trees, obtained by simply
counting the number of leaves in the tree.

The data presented so far explicitly assumed that we already know the values of N and p
of the energy landscapes. Suppose we do not know these values, but all we have are several
instances (say, 100) of barrier trees that were derived from some p-spin model. Is it possible to
say something about the underlying landscape from just the barrier tree? (The problem faced
by the phylogeneticists is even harder since they have access to a single tree of arbitrary size
only [24].)

In figure 4(a), the values of H of all landscapes are lumped together and plotted against
n, the (average) number of leaves in the tree, in a log–log plot. This results in a straight line,
indicating a power-law behaviour. In fact, the slope in this case is 1, since the slopes of H and
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Figure 4. (a) The values of H and (b) the values of C plotted against n, the average number
of leaves in the tree. We find that H does not depend on p for different p-spin models. On the
other hand, the values of C show a significant dependence on the details of the landscape. The
convention is: •, p = 2; �, p = 3; and �, REM.

n when plotted against N are equal (see table 1). The plots for σH and B1 (not shown) are
similar, but with slopes slightly larger and slightly smaller than 1, respectively.

In this case, it is not possible to distinguish the trees that result from, e.g., the p = 2 and
the p = 3 landscapes: they all fall on the same line. Since B2 converges to a fixed value
for larger trees, it is not very useful for distinguishing different trees either. However, when
the imbalance statistic C is plotted against n, there is a clear distinction, as can be seen in
figure 4(b). In particular, if one plots C against ln ln n (i.e., if n is on a double logarithmic
scale), the data are fitted by straight lines with different slopes for the different values of p
(data not shown). So, C clearly can be used as a statistic to distinguish and classify different
barrier trees, and thus their underlying landscapes.

Next we address the question: how different are barrier trees of p-spin landscapes from
random trees? To answer it, we generated random binary trees with n = 10i leaves for i = 1,
2, 3, 4 and 5. For each value of i, 100 random trees were generated and the same five statistics
were calculated. The random trees were generated as follows: first, create n nodes (the leaves)
and put them in a set A. Next, remove two random nodes x and y from A, create a new node
z and make x and y its two children, and put z in the set A. Repeat this procedure until there
is only one node left in A, which will be the root of the tree.

Figure 5(a) shows the data for H against n (the number of leaves) in a semi-log plot for
random trees. Clearly, H depends logarithmically on n. The results for σH and B2 (not shown)
are similar, but with different slopes. Figure 5(b) shows the data for C against n on a log–log
plot. The fit to the data is a power law with exponent −0.81. The results for B1 (not shown)
are similar but with a (positive) exponent very close to 1.

The results for random trees are quite different from those for the barrier trees of p-spin
landscapes. In the p-spin case, H and σH depend exponentially on n, whereas for random
trees this dependence is logarithmic. For C, the reverse is true. Moreover, for random trees, C
decreases with increasing n, while it increases for p-spin barrier trees. For B1, in both cases
the dependence is exponential, but with different exponents. Finally, for B2 both cases are
completely different, with a (downward) convergence to the value B2 = 2 for p-spin trees,
and a logarithmic increase for random trees. Clearly, barrier trees from p-spin landscapes
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Figure 5. Average leaf height H and imbalance measure C as a function of tree-size n for random
trees.

are much more asymmetric than random trees. A similar, though qualitative, conclusion was
reached by considering the size-distribution of minima connected through a high-energy (i.e.,
closer to the root) saddle point [18].

Finally, we investigate the structure of subtrees of barrier trees. Instead of calculating
the tree statistics on the entire tree, they are calculated on subtrees starting at some internal
node of the tree. This way, it can be determined whether the tree has a self-similar structure
or not (i.e., whether subtrees look similar to the tree as a whole). Three different instances of
N = 20, p = 3 p-spin landscape were taken and their barrier trees were constructed. Next,
the five statistics were calculated on the subtrees starting from each of the n− 1 internal nodes
of these trees (a binary tree with n leaves has n − 1 internal nodes). Each internal node in
a barrier tree represents a saddle point in the underlying energy landscape, and the internal
nodes are characterized by the energy values of their corresponding saddle points. Obviously,
nodes higher up in the tree (closer to the root) will have higher energy values than nodes lower
down (or deeper) in the tree (closer to the leaves).

Figure 6(a) shows the results for H. The statistics for the subtrees are plotted against the
energy value of the internal node that forms the root of the subtree. The data for the three
different landscapes can be distinguished from the slightly different range in energy values,
but the overall shape is the same for all three. Clearly, the values for H depend strongly on
the energy value of the root of the subtree. The results for σH and B1 (not shown) are similar.
Figure 6(b) shows the results for the statistic C, where we have discarded subtrees with n = 2
since C is not defined for them. We note that C = 1 for all subtrees with n = 3 leaves. We
find that subtrees with a high-energy root are extremely unbalanced. The same is true for
the subtrees with very few leaves that we find near the global optimum. In the intermediate
regime we find nodes with very balanced subtrees. For B2, the values vary much more widely,
but with most of the points falling on or near the B2 = 2 line. The overall results for p = 2
and for the REM are very similar.

From these plots it is clear that the structure of subtrees does not reflect the structure of
the tree as a whole. Instead, there is a rather well-defined dependence on the structure of a
subtree and its depth in the tree, i.e., the energy value of the internal node that forms its root.
The landscape structure around local minima and saddle points with a relatively high energy
value is therefore significantly different from the structure around local minima and saddle
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Figure 6. (a) H and (b) C against the energy of the internal node (saddle point) for three different
landscapes for N = 20 and p = 3.

points with a low energy. Since this structure is correlated with the energy value of the
local minima and saddle points, this information could possibly be used to guide local search
algorithms.

6. Conclusions

One of the main outcomes of the mean-field (replica) theory of spin glasses was the prediction
that, in the low-temperature phase, the phase space is broken into infinitely many pure states or
valleys [1, 2]. Finding universal, in the sense of model independent, features of the distribution
of valleys is one of the main goals of the theory [33, 34]. Unfortunately, the concept of valley
in the replica theory is not easily related to the more tangible concepts of local minima and
saddles commonly used to characterize complex landscapes. The reason being that the replica
valleys are weighted by their Boltzmann factors which, at least for Gaussian distributed
couplings, results in a single valley (up to an overall spin flip) at zero temperature, thus
contrasting with the exponentially large number of local minima of the landscape. In that
sense, the replica theory is of little use in the characterization of energy landscapes of spin-
glass models. To investigate the organization of the local minima one has then to resort either
to the annealed estimates of the correlations between local minima in the thermodynamic limit
[8, 9] or to the exact numerical calculation of the barrier trees for relatively small system sizes
[10, 11, 18]. As pointed out before, the latter seems a more convenient approach for the purpose
of classifying families of landscapes or spin-glass models. Furthermore, the barrier tree also
contains information about the structure of subspaces in the landscape around local minima
and saddle points, since the structure and symmetry of the subtrees are clearly correlated with
their depth in the tree (or the energy level of the node that forms the root of the subtree). This
information can probably be used to guide local search algorithms such as simulated annealing
in their search for the lowest (or global) minimum.

In searching for efficient measures to characterize landscapes, it was recently shown that
the size-frequency distribution of the number of leaves w connected by a saddle-point s is
too robust to be a useful measure, as it yields the same power-law ψ(w) ∼ w−2 for both
p-spin barrier trees and random trees [18]. In this contribution, we improve considerably the
landscape systematics by considering five measures proposed originally to characterize the
shape of phylogenetic trees [24]. Three of the measures used, namely, H, σH and B1, were
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proved independent of the underlying spin-glass landscape when plotted against the number
of leaves n, as evidenced by the ‘data collapse’ illustrated in figure 4(a). Only one of the
measures, the imbalance C, can be used to differentiate between, e.g., p = 2-type and p =
3-type energy landscapes. It is remarkable, however, that all five measures yield completely
different results for random trees, owing to a different scaling with n. In particular, barrier
trees generated from energy landscapes of p-spin models appear to be much more asymmetric
than random trees, and the asymmetry increases with increasing N (the number of spins) or n
(the number of leaves). It remains a challenge to find (if it exists) a disordered spin system
whose associated barrier trees exhibit balance and symmetry properties akin to those of the
random trees or, perhaps an easier task, that violate the scaling law shown in figure 4(a).
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